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THZ DYNAMICS OF THE LOOP CURRENT AND SHED EDDIES IN A {NUMERICAL MODEL OF THE

GULF OF MEXICO

HARLEY E. HURLBURT and J. DANA THOMPSON

Environmental Simulation Branch (Code 322), Naval Ocean Research and Development

Activity, NSTL Station, MS 39529 USA

ABSTRACT

.The dynamics of the circulation in the Gulf of Mexico have been investi-

gated using simple, efficient numerical models capable of simulating consis-

tently observed dynamical features, including the Loop Current and the shedding

of large anticyclonic eddies from the Loop.. Over 150 model experiments were

integrated to statistical equilibrium, typically 3-5 years.

One popular hypothesis holds that the Loop Current sheds anticyclonic eddies

in response to annual variations in the inflow through the Yucatan Straits.

However, a striking result from the models is their ability to simulate the

observed quasi-annual eddy shedding period with no time variations in the inflow,.

The model-predicted eddy diameters, amplitudes, and westward propagation speeds

are also realistic. The dominant instability mechanism in the eddy shedding is

a horizontal shear instability of the first internal mode, a barotropic rather

than a baroclinic instability. Therefore, a reduced-gravity model with one

vertical mode is able to simulate the basic dynamics of the Loop Current-eddy

system. Rossby-wave theory and a conservation of absolute vorticity trajectory

analysis were used to explain the behavior of the Loop Current, including its

northward penetration into the Gulf, the latitude of westward bending, the

shedding period for the eddies, as well as their diameter, and their woestward

propagation speed.

A regime diagram fnr the reduced-gravity model was constructed in terms of

the Reynolds number Re and the beta Rossby number RB = Vc/SLp 2 , where v is the

velocity at the core of the current, Lp is half the port separation distance and

is differential rotation. Eddy shedding can be prevented by reducing Re or

by increasing RB .

Bottom relief acts to inhibit baroclinic instability, yielding solutions

more closely resembling those from the reduced-gravity model than the two-layer

flat-bottom model. Topography also influences the paths of the shed eddies and,

in the preserce of sufficient deep water inflow through the Yucatan Straits,

prevents Loop Current penetration, westward bending, and eddy shedding. In

effect, the West Florida Shelf acts to reduce the port senaration, increase

RB, and shift the Loop Current into a stable regime.



The signatures of barotropic and baroclinic instabilities in the two-layer

Gulf of Mexico model were studied using upper and lower layer pressure fields

and eddy-mean energetics. Both instability processes tend to drive a deep flo.;

characterized by modon generation and they exhibit similar vertical phase

relationships. ;iowever, in these experiments the westward propagation speeds

associated with baroclinic instability are typically two to three times faster.

1. ITRODUCTION

Semi-enclosed seas are attractive domains for ocean modeling partly because

they allow the use of numerical grids that resolve strong meandering currents

and associated eddying phenomena also found in major ocean basins. The Gulf of

Mexico is particularly attractive because it contains a major current system

that sheds energetic anticyclonic eddies which are comparable in size to warm-

core Gulf Stream rings. This system is illustrated in Fig. 1 by the depth of

the 220C isotherm in the eastern Gulf of Mexico based on a hydrographic survey

by Liepper (1970). It shows the Loop Current entering from the south through

the Yucatan Straits and exiting to the east through the Florida Straits. The

mean transport through the straits is - 30 m3/s (Nowlin, 1972). In Fig. 1 a

large anticyclonic eddy is about to break-off from the Loop Current, as

confirmed by subsequent observations (Elliott, 1979). The Loop Current oene-

trates into the Gulf and sheds these large anticyclonic eddies with a quasi-

annual period. The eddies have a typical radius of 180 km and translate into

the western Gulf at a mean speed of 2.4 cm/s (Elliott,1979).

In this paper we present some basic dynamical ideas and numerical results

concerning the behavior of the Loop Current-eddy system. The dynamica)

topics include 1) the nature of the instability associated with the eddy

shedding, 2) the external and/or internal factors which determine the eddy

shedding period, 3) the trajectory dynamics of the Loop Current and how they

affect the penetration of the Loop into the Gulf, the eddy shedding, and the

diameter of the eddies, 4) the existence of different regimes for the Loop

Current, 5) two important roles of topography in the dynamics, and 6) the

distinctive signatures of barotropic and baroclinic instability in the flow

and in the energetics. Over 150 numerical experiments have been performed to

explore the model parameter space, but more importantly to aid in the formu-

lation and testing of dynamical hypotheses. This paper is both a distillation

and an extension of Hurlburt and Thompson (1980), hereafter referred to as HT.

That paper discusses the only previous numerical model of the Gulf of Mexico

which was integrated to statistical equilibrium or which simulated the basic

repetitive features of the eddy shedding by the Loop Current.
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Fig. 1. Topography of the 220C isothermal surface, 4-18 August 1966 (Alaminos
cruise 66-A-11) from Leipper (1970). Subsequent data (Elliot, 1979) indicates
that an anti cyclonic eddy separated from the Loop Current within several months.

2. DESIGN OF THE NUMERICAL MODELS AND NUMERICAL EXPERIMENTS

The three numerical models of HT are used to elucidate the Loop Current-

eddy shedding dynamics. These models were designed to be as simple as possible

while retaining the ability to simulate the basic phenomena of interest. The

* three models are 1) reduced gravity, 2) barotropic, and 3) two-layer. The

first two are mathematically identical except for parameter values, particularly

the gravitational acceleration. The reduced gravity model is designed to

k represent the first internal mode and contains an upper active layer and a
lower layer which is infinitely deep and at rest. In the reduced gravity

and two-layer models the pycnocline is represented by an immiscible interface

* between two layers with a prescribed density contrast. In the reduced gravity

model bottom topography and baroclinic instability are not permitted. Two

active layers is the minimum to allow baroclinic instability and to allow

coexistence of topography and the pycnocline. The barotroic and reduced

gravity models demonstrate the behavior of the individual modes and provide
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insight into how they interact in the two-layer model. They also allow the

investigation of some phenomena in the simplest context.

The models are primitive equation on a O-plane and retain a free surface.

Using the hydrostatic and Boussinesq approximations and a right-handed

Cartesian coordinate system, the vertically integrated model equations are

T-+ (V i +\Vi • v) Wi + k x f\Vi = -hiVPi

+ (i -i+1)/p + AV2 Vi (1)

ah . Qh. \ i  : o(2)
at

where i = 1,2 for the two-layer model, i=1 for the barotropic and reduced

gravity models and

V=xi + g' = g(P 2 -Pl)/P

P1 = gnl = fo + O(Y-yo) (3)

p2 = p, - g ' (hi" I Wi =  i +

\ i  hiwi = hi(uii + vii)

See Appendix A for symbol definitions. In the reduced gravity model the lower

layer momentum equation is gVn = g'Vh I.

Fig. 2 shows the model domain superimposed on a topographic map of the

Gulf of Mexico. The 200 counter-clockwise rotation of the model domain is

neglected. The numerical models were driven from rest by prescribed inflow

through the Yucatan Straits (southern port) compensated by outflow through

the Florida Straits (eastern port). Except at the ports the boundaries are

rigid and in almost all cases the no-slip condition is used. \Vi is prescribed

at the southern (inflow) port. In most cases a parabolic inflow profile is

used for V i . Due to the geostrophic tilt in the interface across the port,

the velocity maximum is west of the center of the inflow port. At the eastern

(outflow) port the normal flow is self-determined using the full x-momentum

equation. At inflow points the boundary condition is ux=O. At outflow

points the computational boundary condition is uxx:O. The latter results in

upstream differencing for the (Uu)x term, which is lagged in time in this case.

The normal pressure gradient is assumed uniform across the port and is determined

by an integral constraint requiring the net outflow through the eastern port to
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compensate the inflow through the southern port. The tangential velocity com-

ponent at the ports is usually set at zero 1/2 grid distance outside the physical

domain. This weak overspecification eliminaLs the possibility of outflow at

unrealistic angles. Outflow through a channel modeling the Florida Straits is

a more realistic approach. This was done in a few cases, but with negligible

effect. The semi-implicit numerical models of HT are used in this study. The

implicit treatment of the external and internal gravity waves allows much longer

time steps in the numerical integration than comparable explicit primitive equa-

tion models with a free surface. See HT for further discussion of the numerical

models.
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Fig. 2. Bathymetry of the Gulf of Mexico based on U. S. Coast and Geodetic
Survey Chart 1007 and soundings on file at the Dept. of Oceanography, Texas A&M
University. From Nowlin (1972). The rectangle shows the approximate domain of
the numerical model. Inflow and outflow ports are also indicated.

Table 1 presents the parameters of the pivotal experiment for each numerical

model. These parameters imply a maximum upper layer inflow velocity of 70-75

cm/s and an internal radius of deformation, X = (g'hI)1/2/f - 45 km, about four

times less than the observed radius of major eddies shed by the Loop Current.

In the two-layer model the value of g' in the table is multiplied
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by (HI+H 2)/H2 to yield the same internal values for the gravity wave speed as

in a reduced gravity model. The inflow transport is spun up with a time

constant of 30 days to minimize the excitation of high frequency waves. Poten-

tially important wind driving is neglected to allow focus on the Loop-driven

circulation.

TABLE 1

Model parameters for standard case

A 107cm2sec -1 2x101 3cm 1sec'l

fo 5 x 10- 5sec -1  p I gm cm 3

g 980 cm sec 2  Ti 0

g' 3 cm sec "2  Ax 20 km*

HI  200 m Ay 18.75 km*

H2  2800 m At 1.5 hr

Domain Size, xL by YL 1600 x 900 km

Southern Port Width, Lpw 160 km

Eastern Port Width, Le 150 km

Center of southern port at xp 1200 km

Center of eastern port at y p 75 km

Upper Layer Inflow Transport** 20 x 106m3sec - (20 Sv)

Lower Layer Inflow Transport 10 x 106m3sec-1 (10 Sv)

Angle of inflow from x-axis, 01 900

Inflow spin-up time constant 30 days

For the barotropic model the initial maximum depth is H=3000 m and the inflow

tranmsport is 30 Sv.
* for a given variable

** also for the standard reduced g-avity model

Horizontal friction provides the only dissipation in the models.

Because Laplacian friction is a crude parameterization, for convenience

AhiV 2wi was replaced by AV2V i (with minimal effect). The standard eddy

viscosity (A) is greater than required for stable integration of the models.

HT showed this value yields a constant eddy-shedding period for the Loop

Current. Smaller values introduced some irregularity into the period without

substantially altering the long-term mean. Although lower eddy viscosities

are utilized in some experiments, most employ the larger value to reduce the

length of the integration required to obtain stable statistics, and to facili-

tate the analysis of the results. Fig. 3 shows the idealized Gulf of Mexico
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topography used in some of the numerical experiments. Typically the models

were integrated five years to statistical equilibrium.

900 /
• - I~000 \

f 2000

(KM)

0
o (KM I 1600

Fig. 3. Bathymetry of the idealized Gulf of Mexico model. The deepest water

is at 3000 m and the shallowest topography is 400 m deep. The contour interval

is 250 m. (From HT).

3. AN ATTEMPT TO SIMULATE THE EDDY SHEDDING BY THE LOOP CURRENT

Our first goal was to determine which, if any, of the models could demon-

strate eddy shedding with a realistic eddy diameter, amplitude, shedding

period, and propagation. Within the framework of the two-layer model, the

first simulation was made as realistic as possible including the idealized

topography shown in Fig. 3. A longstanding hypothesis (Cochrane, 1965)

maintains that the Loop Current exhibits an annual eddy shedding cycle due to

seasonal variations in the flow through the Yucatan Straits which affect the

penetration distance of the Loop Current. When the Loop retreats, eddy shedding

is presumed to occur. Despite this hypothesis, the model was first driven by

a steady inflow to see if the Loop Current would shed eddies due to purely

internal mechanisms. This might then establish a natural frequency for the

eddy shedding.

The first experiment utilizes the parameters of Table I and the topography

of Fig. 3 except that the upper layer inflow transport is 25 Sv, the lower layer

5 Sv. Fig. 4 illustrates an eddy shedding cycle from this experiment using a

sequence of four synoptic maps of the pycnocline anomaly (PA). The PA is the

7
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deviation of the interface between the layers from its initial flat elevation

and is positive downward (upper layer thickness greater than initial). Fig.

4a shows the Loop Current has penetrated into the Gulf and is beginning to

form an anticyclonic eddy. In Fig. 4b the Loop Current has bent westward and

an eddy is about to break off. Fig. 4c shows the Loop Current and an eddy

just after an eddy-shedding event. In Fig. 4d the eddy has drifted westward

while the Loop Current has penetrated further into the Gulf. Fig. 4a, b shows

that when an eddy reaches the western boundary, it drifts northward with

final decay in the northwest corner of the basin.

The cycle of Loop Current penetration into the Gulf, westward bending and

eddy shedding is repeated with a period of about 290 days, close to the quasi-

annual period observed. Contrary to the popular hypothesis, time variations

of the inflow are not required for the model Loop Current to exhibit realistic

quasi-annual eddy shedding, a striking result first noted by HT. The model

also predicts a realistic eddy diameter, amplitude, and westward propagation

speed. In subsequent experiments HT found that realistic time variations in

the upper layer inflow can have a significant influence on the eddy shedding.

However, the eddy shedding is dominated by the natural period, not the period

of the forcing, a topic we shall not pursue here. In Section 7 we do examine

an important effect of topography and lower layer inflow through the Yucatan

Straits on the eddy shedding.

4. A SIMPLE TEST FOR THE INSTABILITY MECHANISM

The remaining sectons are designed to provide some insight into the

dynamics of the Loop Curient-eddy system. We might be tempted to undertake a

stability analysis to find instability mechanisms, unstable wavelengths, and

growth rates, but we would anticipate that the configuration of the current

would be troublesome. However, there are more fruitful approaches than this.

Nevertheless, we will start with one simple test for the primary instability

mechanism by using the reduced gravity model. If it produces results similar

to the two-layer model, then we have eliminated baroclinic instability as

an essential element of the dynamics, and the primary instability mechanism

is a horizontal shear instability of the internal mode, a barotrooic instab)ility.

9



Fig. 5 compares (a) the experiment with topography discussed in Section 3,

(b) a two-layer flat-bottom experiment using the standard parameters from Table

1, and (c) a reduced gravity experiment using appropriate parameters from Table

1. Shown is a latitude vs. time (y vs. t) plot of PA at a longitude 190 km

west of the center of the southern port. In all three cases the PA shows a

regular progression of discrete eddies with similar eddy diameter, amplitude,

and shedding period. However, the experiment with topography (Fig. 5a) did not

begin to shed eddies for almost three years, a point addressed in Section 7.

With standard parameters the barotropic model evolved to a steady state without

shedding eddies, a matter discussed in Section 6.

The results shown in Fig. 5 lead us to conclude that a horizontal shear

instability of the internal mode is dominant. The two-layer model with Fig. 3

topography, the two-layer flat-bottom model, and the reduced gravity model do

not agree in all the parameter space we explored (see Section 8), but they do

agree for a regime in accord with observed features of the Loop Current-eddy

system. Since the reduced gravity model is the simplest of the models to provide

a realistic simulation, it is used in much of our analysis. The question of

barotropic vs. baroclinic instability is addressed further in Section 8 using

eddy-mean energetics and other signatures of the instability mechanisms.

5. CAV TRAJECTORIES AND ROSSBY WAVE THEORY ELUCIDATE THE LOOP CURRENT - EDDY

SHEDDING DYNAMICS

Constant absolute vorticity (CAV) trajectories and Rossby wave theory are

useful aids in understanding the dynamics of the Loop Current and the eddy shed-

ding including the penetration of the Loop Current into the Gulf and the eddy

diameter, shedding period, and westward propagation.

5.1 CAV trajectory analysis

CAV trajectories are based on conservation of potential vorticity on a

B-plane and on steady, frictionless, geostrophically balanced flow. In the

reduced gravity model this implies that contours of upper layer depth are

streamlines, and thus absolute vorticity is also conserved. The CAV

10
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Fig. 5. Time variations of PA 190 km west of the center of the inflow port for

three cases: (a) case shown in Fig. 4 which includes topograohy, (b) standard

* two-layer flat-bottom case using parameters from Table 1, and (c) standard
reduced gravity case using appropriate parameters from Table 1. A regular

progression of eddies through the north-south cross section is shown in each

case. The contour interval is 30 m. (From HT).
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trajectories are calculated from

sinO = - y + Vco (4)dy vc v cr 0

where 0 is the angle of the current with respect to the positive x-axis, vc is

the velocity at the core of the current, rois the radius of curvature, and the

subscript, 0, indicates a value at the origin of the trajectory calculation

(e.g., see HT; Reid, 1972; Haltiner and Martin, 1957).

Fig. 6 shows CAV trajectories superimposed on the model domain for vc =

75 cm/s, ro=m and six different values of 00. Since ro=w, the origin is the

first inflection point after inflow (see Fig. 4), and not the inflow port as

implied by the figure. As 00 increases, the trajectory increasingly tends to

loop back on itself. When 0o=1300, the CAV trajectory intersects itself at the

origin, a physically impossible situation for a steady flow. Thus, when 0o
becomes large some physical instability of the Loop Current can be anticipated.

In Fig. 6 00 is varied to simulate the formation of an eddy, but it really

represents a sequence of steady state solutions to (4). Although the eddy-

shedding Loop Current is not steady, its evolution is sufficiently slow to

consider it in isostatic adjustment with respect to CAV trajectories. In the

time a fluid particle in the Loop moves from the west side to the east side,

the Loop bends westward only 5 to 10% of the Loop diameter.

5.2 Influence of Rossby waves

How does the model Loop Current bend westward when the angle of inflow
through the Yucatan Straits is not varied? We can gain some insight into this

by examining the continuity equation, (2). If the mass divergence is geostro-

phic, it will propagate westward as a nondispersive internal Rossby wave. (Note

the converse is not true near the equator). For geostrophic divergence (2) becomes

ah 1ah 1  ah1

-t-- aVg/f = t cir 5 = 0 (5)

where V is the geostrophic meridional transport and

Cir = ag'hl/f 2 = BX2 (6)

is the nondispersive internal Rossby wave speed.

The importance of nondispersive Rossby wave propagation can be anticipated
from appropriate isolated vortex theory (McWilliams and Flierl, 1979), because

1) r/X=4 where r is the eddy radius and X is the internal radius of deformation,

and 2) the beta Rossby number, RB=vc/(ar2 )=l for the eddies. From the linear

12
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phase speed for Rossby waves

Cr=a/(k 2+12+X - 2 ) (7)

where k and t are zonal and meridional wavenumbers, respectively, the dispersive

and nondispersive contributions are equal for circular eddies when r/X=U/ 4
2.22. Hence, we also expect a significant but secondary contribution from

dispersive Rossby wave propagation.

Fig. 7 compares the instantaneous mass divergence (V-V1) and the geostro-3hi

phic mass divergence (-cir 2) for the standard reduced gravity experiment at

two different stages in the eddy shedding cycle. The usefulness of the instan-

taneous mass divergence fields must be questioned, since they are easily domi-
nated by rapid oscillations and computational noise. The absence of these con-

taminations was verified by showing that the instantaneous mass divergence and

the 20-day mean are virtually identical. From (2) the 20-day mean can be

determined from the change in hI in 20 days.

Near the ports and near the western boundary the mass divergence is far

from geostrophic. Note particularly in Fig. 7e the ageostrophic mass conver-

gence in the southeastern part of the basin associated with the northward pene-

tration of the Loop Current. Also note that mass convergence occurs at the

center of the eddy during its formation (an anticyclonic inflow), while mass

divergence occurs at the center (anticyclonic outflow) after the eddy separates

from the Loop and slowly decays. However, in the westward bending Loop and in

the recently shed eddy the total mass divergence and the geostrophic mass

divergence are quite similar. This clearly demonstrates an important contribu-

tion of non-dispersive internal Rossby wave propagation to the westward bending
of the Loop Current and the westward propagation of the eddies. Other contri-

butions such as nonlinear and dispersive Rossby wave propagation are not

accounted for here. Still, we have identified an important mechanism which

acts to bend the Loop Current westward. Thus, it also produces a counter-

clockwise rotation of the current at the first inflection point after inflow

(see Fig. 4). This in turn produces changes in the CAV trajectory (Fig. 6)

which leads us to anticipate the formation and shedding of an eddy.

5.3 Two time scales associated with the eddy shedding

Note that westward bending of the current and the tendency for it to loop

back on itself can be understood without invoking an instability mechanism.

An instability mechanism appears essential only to explain the separation of

the eddy from the Loop. Thus, two time scales are associated with the eddy

shedding period: 1) the long time scale for the Loop Current to penetrate into

the Gulf and bend westward into an unstable configuration, and 2) the much

shorter time scale for the growth of the instability as the eddy separates from

14
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the Loop Current. This suggests a repeated spin-up of the Loop Current which

eventually becomes unstable. Although it may, it is not clear that the Loop

Current must satisfy any criterion for instability during much of the eddy cycle.

5.4 Hypothesis testing

The CAV trajectory analysis, Rossby wave theory, and the vorticity equation

can be used to formulate a number of quantitative hypotheses concerning the

northward penetration of the Loop Current into the Gulf, the latitude at which

the westward bending occurs, and the eddy diameter, shedding period, and west-

ward propagation. We will formulate the appropriate scales and then test them

as hypotheses for the dynamics governing the Loop Current-eddy system predicted

by the reduced gravity numerical model. The vorticity equation for the reduced

gravity model is

SI aul av1

at 1 * V~l + (f+ci) + y) B AV2 (8)

where =vx-uy is the relative vorticity.

5.5 Eddy diameter, Loop Current penetration, and latitude of westward bending.

The beta Rossby number, RB, is the ratio of relative to planetary vorticity

advection, and RB=1 provides a minimum inertial length scale, L=(vc/B) 1/2
,

over which B is important. We hypothesize that this determines the latitude at

which the Loop Current bends westward. The frictional length scale over which

Fis important, LF(A/)1 , is much smaller. LBI= 191 km and LBF=37 km for
our standard reduced gravity experiment. This implies that inertia will prevent

Rossby wave action from bending the Loop Current westward at a higher latitude

than friction.

We also find that RB=1 and r=(vc/B)1/2 are appropriate values for the

radius of the eddies formed by the Loop Current. However, without further

analysis it is not clear why the eddies from the Loop Current select this scale.

McWilliams and Flierl (1979) have studied persistent isolated eddies with

RB>>l and note that typically RB>I for Gulf Stream rings.

For insight into the scale selection by the Loop Current eddies, we turn

to the CAV trajectory analysis and present a discussion similar to HT. Inte-

gration of (4) assuming vc constant along a streamline at the core of the

current yields

coso = cos0o + B y
2  (9)

This neglects the point that vc # constant along a streamline, if there are

variations in radius of curvature. The north-south diameter of an eddy between
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speed maxima can be estimated by setting 0o: at the southernmost extent (the

origin) and 0=0 at the northernmost extent. Then for ro=-, (9) becomes

d = 2r = 2(vc/0)112  (10)

where d is the desired diameter, a north-south "dimension" for "stationary

planetary eddies" noted by Rossby (1940, p. 82). This implies that RB=vc/( 3r2 )=1

for the Loop Current eddies.

The northernmost penetration of the core of the current, b, from the lati-

tude of 00 can be estimated from (9) by setting 0=0 at the northernmost extent.

This yields

b + r + 2r2(-cosOo (11)

r
o

For ro=w, (11) reduces to

b = d sin'20o0  (12)

Thus, with ro= the maximum amplitude for a CAV trajectory occurs when 0o- f.

This is what (10) really represents, since in this case the CAV trajectory loops

back on itself northwest of the origin (see Fig. 6). For 0o=1300 the CAV trajec-

tory loops back on itself at the origin in a figure 8 (Fig. 6d) and sin 0o=.9.

We might anticipate that the horizontal shear instability would occur when the

first inflection point of the current after inflow rotates counterclockwise to

1300. In the numerical solutions where the flow is not steady, potential

vorticity is not perfectly conserved, and other conditions of the CAV analysis

are not perfectly met, we find that eddy separation occurs when this angle is

somewhat > 1300 (see Fig. 4). In this case a CAV trajectory would loop back on

itself northwest of the first inflection point after inflow. However, a col is

configured such that eddy separation actually occurs southeast of this inflection

point. From the standpoint of estimating the amplitude of the CAV trajectory

(with ro= ) and thus the eddy diameter, the value of 0 when the eddy separates

from the Loop Current is not critical, since sin!O 0 varies only 10V from 00=1300

to 00=7.

5.6 Tests of some dynamical hypotheses

3 Tests of some hypotheses concerning the dynamical behavior of the Loop

Current are summarized in Table 2. Immediately apparent is the pervasive role

of differential rotation 3. The results are based on 35 reduced gravity experi-
ments (34 for L1 I and Lnd from Table 2 of HT, the same ones they used in

similar hypothesis testing.
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TABLE 2

Tests of some dynamical hypotheses for the Loop Current.eddy system.

Standard reduced gravity case
% bias correlation numerical theoretical

1. Eddy radius

r=(vc/s) 112  6 .87 186 km 191 km

2. Distance from the southern boundary to the latitude of westward bending by

the Loop Current.

= (Vc 1/2 r -7 .75 201 km 186 km

-1 .77 201 km 191 km

3. Maximum northward penetration of the Loop Current.

Lnp = L I + b = 3r -2 .99 574 km 560 km

I 4 .89 574 km 573 km

4. Westward propagation speed of the eddies.

Cir = ax= g'hl/f 2  40 .99 3.21 cm/s 4.57 cm/s

cr = a/(k 2+t2+x"2) -2 .97 3.21 cm/s 3.49 cm/s

5. Eddy shedding period.

Pe = Ao + Alr(1+cosoI) /ce .95 327 days 359 days

.96 327 days 338 days

The % bias and the linear correlation are statistics for the theoretical pre-
diction vs. the values observed in the reduced gravity numerical model. They
are based on 34 to 35 numerical experiments from Table 2 of HT, the same ones
they used in their hypothesis testing for similar quantities. The % bias E
((mo-mp)/m ) where mo and m are the means of the observed and predicted values,
respectively. The two rightmost columns present the results observed and
predicted for the standard reduced gravity experiment which uses the pertinent

k; parameters from Table 1. Results from two tests are presented for L8I, Lnp
and Pe- On the upper line values of r and ce observed in the numerical model
were used in the predictor. On the lower line the theoretical values were used
for r and ce (i.e. cr for ce).

In estimating r, LaI, and Lnp the maximum speed at inflow was used for vc.

One-half the north-south diameter between speed maxima was used for the eddy

radius from the reduced gravity numerical model. The distance from the southern

boundary to the southern end of the eddy diameter was used for LaI and from the
southern boundary to the northern end of the diameter for Lnp. These were

measured as the eddy center passed a longitude 110 km west of the western

boundary of the inflow port. This was also close to the inflection point which
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exhibited a large angle at this time (see Figs. 4 & 7). Thus, the theoretical

estimate of b was simplified by setting 0=. and ro= '. This yields b=2r.

The agreement between the theoretical estimates of r, L,1 , and L and the

values calculated from the numerical model is remarkably good. In most cases

the agreement for r was within 5,. However, at low Reynolds numbers and low

lazitudes, (10) overestimated the model value by -- 10Y.. In the experiments with

low Reynolds numbers downstream attenuation of the current appears to explain

this. At low latitudes the assumption of isostatic adjustment with respect to

CAV trajectories is not as good due to an increased westward propagation speed.

Also r/A is less, so the Loop and the eddies are more subject to dispersion.

In estimating L3 1 and Lnp, values of r from the numerical model were used for

the upper line and theoretical values for the lower line.

In estimating A, he from Table 2 of HT was used for hi and the value of f

at the latitude of the eddy center was used. The correlation between cir and

the westward propagation speed of shed eddies is extremely high, but the theo-

retical speed is 40. greater than observed in the reduced gravity numerical

model. When the dispersive contribution is included, the mean Rossby wave

speed and the mean observed westward propagation speed differ by 2",. The

value of k2+t 2 was estimated by assuming circular eddies and using the theore-

tical values for r.

In Table 2 a regression equation is used to test the hypothesis that the

eddy shedding period is a multiple of the time required for an eddy to move one

eddy radius westward. The multiple depends on the angle of inflow for the

current, 0. The upper line presents the results when values measured from the

numerical model are used for r and ce (the westward propagation speed). On

the lower line theoretical values (cr and ce and (10) for r) are used. The

regression coefficients are Ao=45.1 days anri AI=4.67 for the upper line and

Ao=-.2 days and A1=5.34 for the lower line. The regression coefficient, '2A1,

is a kind of inverse Strouhal number (nondimensional period) if we take the

eddy diameter, d, as the appropriate diameter, and the westward propagation

speed of the eddies (rather than the injection velocity) as the appropriate

velocity. The Strouhal numbers (S=2/A1 ) implied by the two regression results

are .43 for the upper line and .37 for the lower line. If d was the half-

wavelength for a continuous wavetrain, then the Strouhal number would be S=.5.

The eddy shedding period also exhibits a weak dependence on the eddy

viscosity A, primarily because this affects the amount of entrainment or

detrainment downstream. The result is an eddy-shedding period which increases

with increasing Reynolds number, Re=vciL/A where vci is the maximum velocity

at inflow and L is half the inflow (southern) port width. At high Reynolds

j Inumbers, secondary circulations of the Loop-eddy system become significant

and introduce some irregularity into the eddy shedding period.
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6. REGIMES FOR THE LOOP CURRENT IN THE REDUCED GRAVITY MODEL
6.1 The eddy-shedding regime (E)

The preceding section examined some of the dynamics of the eddy shedding
by the Loop Current and demonstrated the usefulness of CAV trajectory analysis

and Rossby waves in explaining the behavior. It also demonstrated the important
role of differential rotation ( ) in most aspects of the eddy-shedding dynamics.

We will call1 the eddy-shedding regime the E regime.

6.2 The steady westward spreading regime (W)

This section investigates the existence of other flow regimes in the
neighboring parameter space. One such regime was found by reducing the Reynolds

number, Re = vcL/A, where L is the half-width of the port. This acts both to
damp physical instabilities in the current and to decrease potential vorticity

conservation, thus reducing the tendency of the current to loop back on itself.
The result is a steady solution with a westward bending Loop Current as shown

in Fig. 8a. We will call this the W regime. Fig. 8a was obtained by increasing

the eddy viscosity (A) from 107 to 3x1 7 cm2 /s in the standard reduced gravity
model. Steady linear viscous solutions (wher e vl=AVk1i) and weakly nonlinear
solutions belong to the W regime. As mentioned in Section 5, the latitude of
westward bending after inflow is determined by the larger of L1 and L~F As
noted by HT, the mean of the standard reduced gravity experiment over an eddy
cycle is very similar to Fig. 8a. This implies that in the mean the eddies drive
a northward-flowing western boundary current.

Between the E and W regimes there is a transition regime (T) with eddies

superimposed on a westward bending Loop Current. This is illustrated in Fig. Sb
using the standard reduced gravity model except that A=2.5 x 10 7cm 2/s. Experi-
ments that exhibited both eddy shedding and an unbroken, westward bending zero
contour (like Fig. 8b) were assigned to the T regime.

6.3 Steady source-sink regime _(N)

A third major regime we call the N regime is found by increasing the beta

Rossby number, RB=vc/($L2), where L is half the distance separating the centers
p p

of the inflow and outflow ports. The N regime occurs when RBW. At sufficiently
low Reynolds numbers the transition between the N and W regimes is determined

by the beta Ekman number, EO M/(Lp P) , as discussed in the next subsection. In
either case the N regime is characterized by a steady source-sink flow with no
westward bending by the Loop Current. It is illustrated in Fig. 9 by two vani-

ations on the standard reduced gravity experiment. In Fig. 9a =O and RB=-.
Note that P>O is essential for the westward bending of the Loop Current and the

eddy shedding shown in Figs. 4 and 7. With Re sufficiently high, we would expect

Ii some instability to occur in the source-sink current, but not the quasi-annual
eddy shedding exhibited by the Loop Current.
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Fig. . Illustration of (a) steauy regime W and (b) time-dependent regime T.

~The standard parameters for the reduced gravity model were used except that in

(a) A = 3 x 107 cm 2/sec and in (b) A = 2.5 x 107 cm2 /s. The contour interval is

~20 m. In regime W the Loop Current bends westward and is steady. In regime! T

eddy shedding is superimposed on a westward bending loop instead of being

discrete as in Fig. 7a, d. 2

!0

1K21

(b



I!U

900 .... .. ..

1KM)

06

(a)
o . I | I if/fN

0 1 KM)

900

IKM)

0 (bi (N

o 1 KM) 1600

900

O00

(KM)

(C)

0 1KM) 1600

Fig. 9. Illustration of the steady regime N for the standard reduced gravity

experiment except that B = 0 and (b) a section of land was added to approximate

the west Florida shelf. Steady mixed regime M is shown in (c) with parameters

chosen to approximate those of Mellor and Blumberg (1981), including Re 10.8

and RB 1.19.

22 " J



I

In a second experiment the port separation was reduced by inserting a land

mass which approximates the location of the West Florida Shelf (Fig. 9b). In

this case Lp was measured using a port centered 75 km south of the western

boundary of the inserted land mass. From Section 5 r=L T=(v C/t)' , thus the beta

Rossby number can also be expressed as RB=(r/LP) or RB=(L,I/Lp)2 . Since the N
regime occurs for RB>2 , this implies a critical port separation 2L PC -2r = 2LI,

From the definition of RB, both . and Lp play a similar role in determining the

N regime. Otherwise, their roles are not similar. As long as RB is small

enough for eddy shedding to occur, the E regime is quite insensitive to Lp, but

most aspects of the dynamics are very sensitive to i .

The N regime occurs when the Loop Current reaches a steady state before

penetrating far enough into the Gulf to bend westward. From (12) and Fig. 6d a

CAV trajectory with ro=' can penetrate into the Gulf with no westward bending

a distance b = 42r = V2L1I (the same as the critical port separation). Using

this as an estimate of the maximum possible Loop Current penetration in the N

regime is consistent with our present numerical results (see HT for further

discussion).

The transition between regimes N and E is quite abrupt and a transition

regime has not been found in any of our numerical experiments. The transition

between regimes N and W is broader. In this mixed regime (M) the westward

spreading of the Loop Current is significantly less than it would be if the port

separation were infinite. The numerical simulation of the Loop Current by

Blumberg and Mellor (1981) belongs to this M regime. Fig. 9c shows a reduced

gravity analog of that experiment using our estimates of appropriate parameters,

including Re=1O.8 and RB=I.1 9 (See Appendix B for other parameters used).

Considering our neglect of the 200 counterclockwise rotation of the basin, our

pattern for the Loop Current is remarkably similar to that from the much more

complicated and expensive model of Blumberg and Mellor (1981). Experiments were

assigned to the M regime if the central contour on inflow exhibited any westward

bending, but the amplitude of the Loop PA was < 30 of the maximum a distance

(vci/i)'2 west of the center of the inflow, where vci is the maximum velocity at

inflow.

6.4 Stabilityregime diagram
Three nondimensional parameters from the vorticity equation (Eq. (8)) play

an important role in determining the stability regimes for the Loop Current in

*the reduced gravity and flat-bottom barotropic models. They are the Reynolds

number (Re), the beta Rossby number (RB), and the beta Ekman number (EB). Only

two of these are independent. Provided the same scales are used, EB=RB/Re.

* Fig. 10 shows the parameter space occupied by the various regimes on a stability

diagram of Re vs. RB. Eddy shedding occurs for RB< 2 and Re>25 for the reduced
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gravity model, Re>40 for the flat-bottom barotropic model (not shown). Apparently,

the dispersive nature of Rossby waves in the barotropic model is a catalyst which

leads to a higher critical Reynolds number (Rec). The transfer of energy to

the lower layer in the two-layer models seems to have a similar effect on Rec.

At low Reynolds number the transition between regimes N and W depends upon

EB=RBL/(ReLP). The correction factor L/Lp is required because we have not used

Lp in our definition of Re. This transition is clearly defined on our stability

diagram only if L/Lp is fixed. From Section 5.5 RB and EB can be expressed in

terms of the latitude of westward bending by the Loop Current, i.e. RB=(L I/Lp)
and EB=(LF /Lp) 3 . Whether RB or EB determines the transition to the N regime

depends upon the relative importance of L F, the frictional length scale, and

L I, the inertial length scale, in determining the latitude of westward bending

by the Loop Current. From the regime diagram, the transition between these two

criteria occurs when 2.5 L F=L I/r.

Other parameters not accounted for here such as inflow angle, basin

geometry, and basin orientation may also have some influence on the regime

selection. Additional influences in the two-active-layer model are discussed

in the next two sections.

7. PREVENTION OF EDDY SHEDDING BY TOPOGRAPHY AND DEEP-WATER INFLOW THROUGH

THE YUCATAN STRAITS

In this section the two-layer model is used to demonstrate a dramatic

effect of topography on the eddy-shedding by the Loop Current when there is

sufficient deep-water inflow through the Yucatan Straits. Fig. 11a shows the

domain-averaged upper layer (upper curve) and lower layer kinetic energy vs.

time for a two-layer experiment the same as shown in Fig. 4, except that during

the first six years of model integration the lower layer inflow was zero. This

includes the topography of Fig. 3. At the beginning of year 7 the lower layeriiflow

was increased to 10 Sv with a time constant of 30 days. While the lower layer

inflow was zero, eddy shedding occurred in a manner similar to that shown in

Fig. 4. The signature of the eddy shedding cycle is depicted in the upper layer

energy curve of Fig. Ila. When the lower layer inflow was increased, the eddy

shedding ceased and the solution evolved to a steady state as shown in Fig. 11a.

This steady solution is shown in Fig. 11b, c in terms of the PA (Fig. 1Ib) and
the lower layer pressure, P2 (Fig. 11c). The PA depicts a source-sink flow like

*regime N, while the flow in the lower layer follows the f/h contours of the topo-

graphy. HT uses a kinematic analysis to illuminate the dynamics of this

phenomenon. From the continuity equation (2), the divergence term hiV • w I is

balanced by the advective term w 1.VhI in a steady state. Since the flow is

nearly geostrophic, w 1.7hI 1  Wvg*Vhl = \v2g.Vh1 , where vig is the geostrophic
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Fig. 11. Results for the bottom topography experiment shown in Fig. 4 except

that T1  25 Sv and T2= 0 until year 6 when T2 increases to 10 Sv. (a) domain-

averaged upper layer (top curve) and lower layer kinetic energy, (IC = 1.5). (b)

Nearly steady PA at day 2881). The contour interval is 20 m. (c) Lower layer

pressure normalized by density (P2) at day 2880. The contour interval is .25 m /s.
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velocity component in layer i. The magnitude of W2g-Vhl is greatest when
relatively strong lower layer currents flow at large angles to contours of h.
Comparison of Fig. lib and l1c shows that this occurs where the Loop Current
intersects a current following the f/h contours of the West Florida Shelf. If
the lower layer current is strong enough for the advection to balance the
divergence in (2) associated with the approaching Loop, then the interface deepening
and Loop Current penetration in this region are halted.

Thus, the West Florida Shelf along the eastern boundary of the domain (see
Fig. 3) and lower layer flow act in conjunction to effectively reduce the port
separation by locally limiting the northward penetration of the Loop Current.
If this results in RB>2, when we measure 2L pas the distance between the center
of the inflow port and the point where the upper and lower layer currents inter-
sect, then the upper layer current exhibits the source-sink flow characteristic
of the N regime described in Section 6. This is illustrated by comparing Fig. 11b
with Fig. 9b, the reduced gravity experiment with a land mass in the location of
the West Florida Shelf.

In the experiment shown in Fig. 11 the Loop Current had already penetrated

far into the Gulf and shed eddies when the lower layer inflow was increased.
When this increase occurred, a current following the f/h contours developed in

the lower layer and the advection term ( \v1*Vhl) began to exceed the divergence
term in the continuity equation where the Loop Current crossed the shelf slope,

causing h, to decrease there. Thus, the Loop Current retreated southward until

an equilibrium occurred near the southern end of the shelf.
In terms of vorticity dynamics, the northward penetration of the Loop

Current is halted when the interaction between the topography of the West

Florida Shelf and the pressure field results in a near balance between the
pressure torques and the nonlinear terms in the mass transport vorticity
equation. HT discuss and document this topic in more detail.

The results in this section suggest that certain time variations in the
deep flow through the Yucatan Straits may have a greater effect on the Loop
Current than fluctuations in the upper ocean current through the Strait. The
effects of the latter are discussed by HT but notin this paper.
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8. BAROTROPIC VS. BAROCLINIC INSTABILITY AND THE IMPORTANT ROLE OF TOPOGRAPHY

Section 6 examined stability regimes for the reduced gravity model. In

Section 7 we studied a steady regime for the two-layer model which results from

a particular combination of topography and deep flow following f/h contours.

In this section we will investigate additional regimes of the two active layer

model, confining ourselves to unsteady regimes with eddies. In particular we

will search for cases of barotropic, baroclinic, and mixed instability.

The reduced gravity and barotropic models can exhibit barotropic, but not

baroclinic instability. The reduced gravity model has demonstrated an eddy

shedding regime with a horizontal shear instability of the first internal mode

(a "barotropic" instability) which produces a remarkable simulation of observed

features of the Loop Current - eddy shedding system. We know from Section 4

that in some cases the two active layer model exhibits similar results with

similar parameters. In this section we will investigate the potential importance

of baroclinic instability and the role of topography in determining its importance.

8.1 Eddy-mean energetics

We begin this investigation by surveying the eddy-mean energetics for the

seven numerical experiments listed in Table 3. We then illustrate some charac-

teristic features of the different regimes using synoptic maps of upper and lower

layer pressure (pl and P2) and curves of domain-averaged energy vs. time. Fig. 12

shows the eddy-mean energetics in terms of energy box diagrams. Fig. 12a labels

the energy transfers. See Appendix A for symbol definitions and Appendix C for

the energy transfer integrals. All of the model domain was used in calculating

the energetics except the parts within 100 km of the eastern boundary and 37.5

km of the southern boundary. Thus, the eastern and southern boundaries of the

energetics calculations are open. Kinetic energy and pressure work fluxes

through these open boundaries are represented by arrows at the top (bottom) of

the KI (K2) boxes. In all cases most of the energy flows into Ki. In some

cases there is significant efflux from Ki. but always must less than the KI)Kj

transfer. The arrows pointing outward from the sides represent dissipation of

a particular type of energy due to Laplacian horizontal friction. Arrows between

the boxes represent conversions of energy from one type to another as indicated

by the direction of the arrow.

Fig. 12b shows the eddy-mean energetics for Experiment 1 on Table 3, a two-

layer flat-bottom experiment using the standard parameters given in Table 1.

The KI Kj energy conversion is characteristic of a barotropic instability. The

potential energy transfer is actually reversed with eddy potential energy (P')

feeding the mean.

Angling the inflow 270 west of normal in the standard two-layer flat-bottom

model (Experiment 2) produced a dramatic change in the eddy-mean energetics which
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TABLE 3
Model experiments discussed in Section 8

Exp $ Differences from standard two-layer Figures in HT from these
flat-bottom experiment in Table 1 experiments (HT Fig. #)

1 None Figs. 5b, llb, 14a

2 = 270, Sv2 = 0 Figs. 12, 13a, 14d

3 Reduced gravity, Yucatan and Figs. 20a, 21a,
Florida Straits added to model HT Table 2 case RG32
domain

4 A = 3 x 106 cm2 /s, Sv2 = 0 Experiment in HT Figs. 10,
11a, 14c exhibits similar

i behavi or

5 A = 3 x l0
5 cm2/s, Sv2 = 0

Fig. 3 topography

6 SvI = 25, Sv2 = 0 Figs. 24b, 25b

7 SvI = 25, Sv2 = 0,
Fig. 3 topography Figs. 24c, 25c

Svi is the inflow in layer i in 106 m3/s or Sv.

is shown in Fig. 12c. (The lower layer inflow was also reduced to zero, but

other experiments show this has a relatively minor role in altering the energetics

in this case). Fig. 12c illustrates a classic signature of baroclinic instability

in the eddy-mean energetics with P P' dominating the mean to eddy energy

transfer and feeding the upper and lower layers almost equally. There is even

a reverse cascade in the kinetic energy (K-*K1 ) with eddies feeding the mean

flow.

The eddy-mean energetics for the reduced gravity model (Experiment 3 and

Fig. 12d) illustrates a pure barotropic instability, since this model excludes

baroclinic instability. In this case the dominant mean to eddy energy transfer

is K-K'. Even though this is a pure barotropic instability, there is a net

transfer from P- P'. Thus, the existence of such a transfer does not necessarily

imply any contribution from baroclinic instability.
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Fig. 12e is particularly interesting because it illustrates a mixed insta-

bility and because it demonstrates the value of separating the kinetic energy

into upper and lower layer components. These results were obtained primarily

by reducing the eddy viscosity in the two-layer flat-bottom model by a factor of

three (Experiment 4). If K1 and K2 were combined to produce a 4-box diagram,

the results would look much like those for the reduced gravity model and we

might conclude that this is a case of barotropic instability. In contrast, the

6-box diagram (Fig. 12e) illustrates a striking result. Although a barotropic

energy conversion (K-Ki) is dominant in the upper layer, the lower layer eddies

are fed almost equally by transfers from P-P' and Ki-P'. In view of the reduced

gravity results, this is insufficient evidence for an important contribution from

baroclinic instability to the lower layer eddies. Additional evidence for this

will be provided shortly.

Figs. 12e and 12f compare the results for Experiments 4 and 5. The experi-

ments are identical except that Experiment 4 (Fig. 12e) has a flat bottom and

Experiment 5 (Fig. 12f) includes the idealized Gulf of Mexico topography shown

in Fig. 3. The topography strongly suppresses any baroclinic instability. With

the topography added, the energy box diagram (Fig. 12f) indicates a strong baro-

topic instability (K-.Ki) and a strong reverse potential energy flux (P' P).
Figs. 12g and 12h again compare experiments with and without the topography

of Fig. 3 (Experiments 6 and 7). They differ from the preceding by a three-fold

increase in the eddy viscosity and a 25% increase in the upper layer inflow.
The experiment with the topography (Fig. 12h) exhibits essentially the same

energy pathways as the previous frame with the same topography (Fig. 12f). The

reverse potential energy transfer (P' P) is even stronger. Almost 1/3 of the

eddy energy makes a complete circuit. Although this reverse transfer is clearly

augmented by the topography, it is not restricted to experiments with topography

(see Fig. 12b). Without the benefit of the energetics analysis, HT correctly
identified the baroclinically unstable case (Fig. 12c) and a mixed instability

case similar to Fig. 12e. However, they also conjectured that Experiment 6

(Fig. 12g) is a case of mixed instability. This is not corroborated by the

domain integrated eddy-mean energetics. Eddies in both layers are fed by energy
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conversions appropriate for a barotropic instability, the lower layer fed

indirectly via energy transfer from the upper layer. In this case, increasing

the eddy viscosity has suppressed the contribution from baroclinic instability.

Experiment 6 (Fig. 12g) differs from Experiment I (Fig. 12b) by having 25%

greater inflow in the upper layer and none in the lower layer. The energy

pathways in the two experiments are similar, but Fig. 12g shows more energy

transfer to the lower layer and lacks the reverse (P'-4) transfer of the standard

flat-bottom experiment (Fig. 12b).

The energy transfers in all these experiments are strongly inhomogeneous in

space. Thus, as stressed by Harrison and Robinson (1978), energy transfers

averaged over the model domain may not be characteristic of any important

subregion.

8.2 Kinetic energy vs. time

In the following discussion, we will illustrate features of the flow which

are characteristic of the three regimes identified in the eddy-mean energetics

with barotropic, baroclinic, and mixed instabilities. We will utilize the four

experiments which do this most simply and clearly, (a) Experiment 1 for barotropic

instability with a flat bottom, (b) Experiment 7 for barotropic instability with

topography, (c) Experiment 2 for baroclinic instability, and (d) Experiment 4

for mixed instability. Fig. 13 shows the curves of K1 and K2 vs. time for these

four experiments.

Fig. 13a, b represents the barotropically unstable experiments and clearly

shows a relatively long period for the eddy shedding cycle, 273 days for Experi-

ment 1 (Fig. 13a) and 250 days for Experiment 7 (Fig. 13b). Fig. 13c shows a

much faster 57 day oscillation for the baroclinically unstable experiment,

Experiment 2. The corresponding reduced gravity experiment (not shown), in

which baroclinic instability is not permitted, has a 284 day period. The period

in Fig. 13c is very similar to that found by Holland and Lin (1975) for mid-

latitude mesoscale eddies in a two-layer model with baroclinic instability.

They also noted a similar maximum in K1 near the onset of baroclinic instability

which is followed by a rise in K2. We have not found this type of signature in

any of our barotropically unstable experiments. Fig. 13d shows K, and K2 vs.

time for Experiment 4, the experiment for which the eddy-mean energetics (Fig. 12e)

suggest a mixed instability. Two periods which are not harmonically related are

clearly indicated, a long period of 300 days, which is typical of barotropically

j unstable experiments, and a much shorter 56 day period similar to that for the

baroclinically unstable experiment. Also notable are the dramatic spikes in

K2 lagging the maximum in K1 . This resembles the behavior of K2 at the onset

of baroclinic instability shown in Fig. 13c.
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Fig. 13. Average kinetic energy over the rectangular domain (upper curve for

upper layer) for (a) Experiment 1, the standard two-layer flat-bottom case,

(b) Experiment 7, with the topography of Fig. 3,(c) Experiment 2, with non-normal

inflow, and (d) Experiment 4, identical to Experiment 1 but with A 3 x 106cm 2/s
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I
8.3 Modon generation in the barotropically unstable experiments

We begin examining the characteristic features of the flow in different

regimes by studying two experiments where the eddy-mean energetics indicate

barotropic instability. One experiment has a flat bottom, and the other includes

the idealized Gulf of Mexico topography shown in Fig. 3. The two experiments

which illustrate the basic features of this flow in the simplest and clearest

fashion are Experiment 1 with Fig. 12b energetics (the standard flat-bottom

experiment) and Experiment 7 with topography and Fig. 12h energetics.

Fig. 14 shows synoptic views of pl and P2 for Experiment 1. At day 1710,

P1 (Fig. 14a) shows the Loop Current penetrating into the basin and beginning

to bend westward. An eddy shed earlier lies in the western Gulf. A characteristic

feature of the barotropically unstable experiments is the generation of a modon

in the lower layer as the Loop Current begins to form an eddy (Fig. 14b). The

relationship between p1 and P2 can be seen clearly by superimposing the fields.

The modon intensity tends to follow that of the generating eddy in the upper

layer. The axis of the modon is oriented close to the direction of propagatiun

by the upper layer vortex with the anticyclonic member leading and the cyclonic

member trailing. The orientation of the modon generated here is quite different

from that found by McWilliams and Flierl (1979) for isolated, nearly circular

vortices, but the tendency of the eddy in the upper layer to propagate toward

the member of the modon with like rotation is similar. However, in this case

the westward propagation speed of the modon slightly exceeds that of the upper

layer vortex. Thus the flow actually becomes more baroclinic and in Fig. 14a, b

we see the anticyclonic eddy in the upper layer situated over the cyclonic member

of the modon. This behavior is common but not universal in our numerical experi-

ments. It is quite unlike the coupled behavior of the isolated baroclinic

vortex and barotropic modon studied by McWilliams and Flierl (1979). In their

results the modon member with rotation unlike the baroclinic vortex eventually

broke away and the barotropic and baroclinic vortices tended to become super-

imposed and to approach a state of deep compensation (no signature of the vortex

in the lower layer). When the upper layer vortex reaches the western boundary

and propagates northward (Fig. 14c), it is again associated with a modon in the

lower layer (Fig. 14d) and again the modon is oriented in the direction of

j propagation with the like (anticyclonic) member leading and the opposite member

trailing.

Fig. 14b, d shows an additional interesting phenomenon which occurs in the

lower layer. If the lower layer were integrated separately as a barotropic

model, the solution would evolve to a steady, westward-bending Loop Current as

in regime W. The solution would be similar to Fig. 8a but the loop would bend

westward at a lower latitude because (vc/B) is much less (see Section 5.5).

The lower layer inflow velocity at the core of the current is only 3.35 cm/sec.
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In this experiment with two active layers, the lower layer flow is quite different

from the barotropic prediction. During the formation of the modon, the Loop

Current in the lower layer exhibits a source-sink flow (Fig. 14b). The modon

is the dominant flow and prevents the natural westward bending of the Loop.

When the modon moves away (Fig. 14d), the lower layer Loop bends far to the west

and sheds a weak eddy almost in phase with the upper layer (Fig. 14c). In the

mean (Fig. 15) both the upper and lower layers exhibit a westward-bending loop

like the W regime. As predicted by (vc/W) and the higher inflow velocity in

the upper layer, the mean loop in the upper layer bends westward at a higher

latitude. The lower layer also exhibits counter'rotating and zonally elongated

mean gyres north of the loop. These are driven by downward flux of eddy energy

from the upper layer and may also influence the latitude of the mean Loop Current

in the lower layer.

Fig. 16 shows a synoptic view of p, and P2 at day 1760 for a barotropically

4 unstable experiment with Fig. 3 topography (Experiment 7 with Fig. 12h energetics).

This experiment exhibits coupled upper layer vortex, lower layer modon behavior

similar to the flat bottom experiment, except that the modon is mostly confined

to the abyssal plain. Another difference is that the upper layer vortex remains

between the modon pair. The modon is partially steered by the topography.

Apparently, the back interaction from the modon to the upper layer is sufficient

that the trajectory of the upper layer vortex is also modified by the topography.

Fig. 17 compares upper layer eddy trajectories for Experiments 6 and 7, two

experiments with no flow through the ports in the lower layer. The experiments

are identical except that Experiment 6 has a flat bottom and Experiment 7 includes

Fig. 3 topography. Because Experiment 7 includes no flow through the ports in

the lower layer, there is no current following the f/h contours, unlike Fig. 11c.

The addition of such a current had no major effect on the modon, provided the

current was weak enough to permit the normal eddy sheddinq to occur.

Although eddy activity in the lower layer modified the propagation of the

upper layer vortex, the propagation of both the upper layer vortex and the

associated modon was dominated by internal Rossby wave propagation in both the

reduced gravity and two active layer experiments which exhibited discrete eddy

shedding and a horizontal shear (barotropic) instability of the internal mode.

j As we will see shortly, this is not the case in the experiment with a baroclinic

instability.
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8.4 Flow characteristics associated with baroclinic instability

Fig. 18 shows a synoptic view of p, and P2 for Experiment 2 where the upper

layer inflow is angled 270 west of normal and there is no flow through the ports

in the lower layer. The eddy-mean energetics (Fig. 12c) indicate the occurrence

of baroclinic instability. This experiment exhibits modon-like generation similar

to that earlier associated with a barotropic instability. However, the eddies

tend to be smaller and the greater population of eddies tends to mask the modon

character of the eddy generation. The upper and lower layer eddies near the

eastern part of the Loop bear a phase relationship which is similar to the

barotropically unstable experiments. The modon axis is oriented close to the

direction of propagation of the anticyclonic eddy in the upper layer, with the

anticyclonic modon member leading and the cyclonic one trailing. One difference

is that the modon axis is south of the upper layer vortex. Thus, the lower layer

eddies tend to be strongest under the westward-flowing arm of the Loop Current as

expected for a baroclinic instability (Gill, et al, 1974; Philander, 1976).

Later, in the central basin the leading modon member shifts northward, away from

the westward propagating vortex in the upper layer. The trailing vortex remains

under the westward branch of the Loop. Thus the modon axis is no longer aligned

with the direction of propagation. In general, the lower layer eddies tend to

be elongated meridionally in the eastern part of the basin where they originate

and zonally in the western part of the basin where they decay. In the western

part of the basin the eddies also show some tendency toward barotropy. Except

for the initial meridional elongation, these tendencies are consistent with

results presented by Rhines (1977).

The most dramatic difference between the experiments with barotropic and

baroclinic instability lies in the propagation speed of the eddies. In the

barotropically unstable experiments with discrete eddies the internal Rossby

wave speed associated with the upper layer vortex exerts primary control on the

propagation in both layers. Even though the eddies in the baroclinically

unstable case are smaller, they propagate westward at - 10 cm/sec, typically

2 to 3 times faster than in the barotropically unstable experiments. Although

it is difficult to estimate an appropriate shear velocity, the propagation speeds

in our numerical model are quite consistent with those for baroclinic instability

jin a linearized two-layer model with a horizontally uniform basic flow(Pedlosky, 1979).
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Gill, et al (1974) have suggested the upper to lower layer phase shift as

a means of detecting baroclinic instability. In our results we find this is not

very useful because the barotropic instability which occurs in the upoer layer

generates a modon in the lower layer with upper-lower layer phase relationships

which are much like those of the baroclinic instability. In our results the

westward propagation speed of the eddies is a much clearer distinguishing

characteristic.

8.5 Flow characteristics of a mixed instability

Fig. 19 shows two synoptic views of p1 and P2 for Experiment 4 which has a

flat bottom, no inflow in the lower layer, and one-third the eddy viscosity of

tile experiments discussed in Sections 8.3 and 8.4. The eddy-mean energetics

(Fig. 12e) suggest that a mixed instability occurs in this experiment. Since

there is no flow through the ports in the lower layer, all the energy in the

lower layer is received from the upper layer. Apart from this the flows in the

two layers are much more independent than those discussed in the two preceding

subsections.
Eddies in the lower layer propagate westward at approximately the external

Rossby wave speed (- 10 cm/sec), and those with like rotation pass a given point

with a periodicity of about 60 days. Unlike the experiments discussed in

Sections 8.3 and 8.4 there is no clear phase relationship between the eddies

in the lower layer and the eddy which forms on the Loop Current in the upper

layer. This is true during most, but not all, of the eddy-shedding cycle of the

Loop Current. In this experiment the eddy-shedding period is about 300 days and

is depicted as a slow oscillation in K, (Fig. 13d). There is a back interaction

from the lower layer eddies to the Loop Current in the upper layer which causes

a strong undulation of the Loop with approximately a 60 day period. This is

depicted in Fig. 13d as the high frequency oscillation in K1 . Except for this

undulation, the Loop Current penetrates into the Gulf, bends westward and begins

to form an eddy structure just as in the barotropically unstable experiments, but

near the time an eddy would treak off (Fig. 19a) in a barotropically unstable

experiment, something quite different occurs. The Loop Current suddenly shoots

far to the west at a speed appropriate for baroclinic instability and breaks

into a series of smaller eddies. During this process lower layer eddies under

the south side of the Loop strengthen dramatically and the upper and lower layer

eddies develop distinct phase relationships. An anticyclonic eddy in the lower

layer leads the westward advance on the Loop Current. At this stage phase

relationships in the upper and lower layers are very similar to those for the

baroclinically unstable case, and they exhibit the same differences from the

barotropically unstable experiments. These phase relations disintegrate as soon

as the rapid westward advance of the Loop Current is halted. Thus we have a
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picture of episodic baroclinic instability associated with a small part of each

300 day eddy-shedding cycle of the Loop Current. This instability is strong enough to

show up in the domain-averaged eddy-mean energetics (Fig. 12e) and to provide

a sharp spike in the curve of K2 vs. time (Fig. 13d). Day 1720 (Fig. 19b) is

near the foot of the last spike and day 1760 (Fig. 19d) is near the top of it.

The much weaker coupling for the two layers than found in either the

barotropically or baroclinically unstable experiments is explained in part by

the peculiar episodic nature of the baroclinic instability in Experiment 4 and

in part by the 3 times lower eddy viscosity. Because the eddies in the lower

layer are governed by external Rossby wave propagation, they are dispersive in

nature. With the lower eddy viscosity they are not dissipated as soon after

generation and have greater opportunity to disperse and fill the basin. The

importance of dispersion in spreading the eddy population in the lower layer has

been noted by Rhines (1977) and in the study of isolated vortices by McWilliams

and Flierl (1979).

A comparison of Fig. 16 (for the experiment with idealized Gulf of Mexico

topography) and Fig. 19 (for the flat-bottom experiment with a mixed instability)

indicates how the topography can suppress the episodes of baroclinic instability

found in the latter case. When the topography of Fig. 3 is present, the eddies

in the lower layer are mostly confined to the abyssal plain. Lower layer eddy

generation over the strongly sloping topography is prevented because the eddy

flow would have to cross the closely packed f/h contours at large angles,

behavior not anticipated in geostrophically balanced flow which conserves

potential vorticity. The strong eddies in Fig. 19d which form under the westward-

flowing branch of the Loop Current lie over the region of the Campeche Bank and

the slope of the bank. Thus, they are prevented from forming when the topography

of Fig. 3 is included. We can now appreciate why the two-layer model with topo-

graphy produces results more like the reduced gravity model than does the two-

layer flat-bottom model. If the westward branch of the Loop Current were to

flow over the abyssal plain, we might expect the model to exhibit episodes of

j baroclinic instability even when the topography is included.

I
I
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9. SUMMARY AND CONCLUSIONS

In this paper we have demonstrated the ability Of Simple numerical models to

perform remarkable simulations of the Loop Current - eddy system in the Gulf of
Mexico. Tne models were designed for computational efficiency and simplicity,
retaining only the essential physics and characteristics of the Gulf required to
simulate the basic dynamical behavior of the system. The simplicity of the models
facilitated the analysis of the system dynamics and the computational efficiency
allowed us to perform over 150 multi-year integrations. The efficiency also
allowed us to use horizontal resolution adequate to investigate interesting
regions of the parameter space. regions where time dependent eddies dominated

the circulation.
The numerous numerical experiments explored the model parameter space and

aided in the formulation and testing of dynamical hypotheses. The most salient
4 results from the model are summarized in the seven points which follow.

1) The simple models were able to simulate the anticyclonic eddy shedding by

the Loop Current and to simulate eddies with realistic diameters, amplitudes,
and westward propagation (Figs. 1,4). Most striking was the ability of the models
to simulate the observed quasi-annual period of the eddy shedding with no time
variations in the inflow through the Yucatan Straits (southern port). This is

contrary to the popular hypothesis that the Loop Current sheds eddies in response
to annual variations of the inflow.

te2) The reduced gravity model proved to be the simplest model able to simulate

tebasic dynamics of the Loop Current and the eddy shedding (Fig. 5). This
indicates that baroclinic instability is not an essential element of the dynamics.
Instead a horizontal shear instability of the first internal. mode (a barotropic
instability) is the dominant instability mechanism.

3) We have demonstrated the usefulness of CAV trajectory analysis and internal
Rossby waves in explaining the eddy-shedding behavior of the Loop Current, including

* the eddy diameter, the Loop Current penetration into the Gulf, the lati'.Ae of

westward bending by the Loop Current, the westward speed of eddy propagation, and
the eddy shedding period (see Table 2). The role of differential rotation (W
is pervasive. This theory also showed that it is not necessary to invoke an
instability mechanism to explain the westward bending of the Loop Current, nor
the tendency for it to loop back on itself. This suggests that an instability
may be essential only to explain the final eddy separation from the Loop Current.

4) Two steady regimes were found in the parameter space neighboring the eddy

shedding regime. The parameter space occupied by each regime was depicted on a

regime diagram for the reduced gravity model (Fig. 10).

5) In the presence of sufficient deep water inflow through the Yucatan Straits,

the Florida Shelf topography may prevent Loop Current penetration, westward bending
and eddy shedding by effectively reducing the port separation. This shifts the
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Loop Current into one of the stable regimes (Section 7). Certain time varia-

tions in the deep flow through the Yucatan Straits may have a greater effect

on the Loop Current than fluctuations in the upper layer flow through the strait.
6) Bottom topography plays another important role by inhibiting baroclinic

instability. Thus the reduced gravity solutions were more like two-layer solutions

with the idealized Gulf of Mexico topography (Fig. 3) than two-layer flat-bottom

solutions. The topography also demonstrated some ability to steer eddies in the

upper ocean through back interaction from eddies in the lower layer which were

mostly confined to the abyssal plain.

7) Finally, we examined the characteristic signatures of barotropic and

baroclinic instability in the pressure fields of both layers and in the eddy-

mean energetics. In both cases there was a tendency for eddies in the upper

layer to drive a modon in the lower layer. The upper and lower layer phase

relations were surprisingly similar for both types of instability, but the west-

ward propagation speeds associated with baroclinic instability were typically

two to three times faster.
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APPENDIX A

List of Symbols

A horizontal eddy viscosity

Cir nondispersive internal Rossby wave speed

cr internal Rossby wave speed including dispersion

I EB beta Ekman number, A/(BLp3 )

f' fo Coriolis parameter; fo taken at southern boundary (yo)
g acceleration due to gravity
g' reduced gravity, g(P2 - Pl)/p

HI, H2(xy) initial thicknesses of the layers

hl, h2  instantaneous local thickness of the layers

47



Ki' Kit KI kinetic energy (u2 + v2 ); of the mean flow; mean of the

eddy flow, respectively, for layer i.

k, f zonal and meridional wave numbers, respectively

L halfwidth of the southern port
L6F minimum frictional length scale over which a is important,

(A/ )1/3

LBI minimum inertial length scale over which a is important,
(Vc/6)

Lnp maximum northward penetration of the Loop Current

Lp half the port separation distance

P, P, P' potential energy p(gri +g'2 2); of the mean flow; mean of
the eddy flow, respectively.

P1  upper layer density-normalized pressure, gnl.

P2 lower layer density-normalized pressure, g il - g'(h1 H1 )
Pe eddy shedding period

RB  beta Rossby number, vc/Lp
Re Reynolds number, vc L/A

r eddy radius

t time

At time increment in the numerical integration

ul, u2  x-directed components of current velocity

Vci maximum inflow speed

vc speed at the core of the current

Vg geostrophic meridional transport

WVI , \V2  h1 v1 , h2 \v2

x, y, z tangent plane Cartesian coordinates: x positive eastward,
y positive northward, z positive upward

XL YL east-west and north-south domain size

Ax, Ay horizontal grid increments

differential rotation, df/dy

relative vorticity v. - uy

nIl free surface anomaly; height of the free surface above
its initial uniform elevation; nI = hl + h2 - H1 - H2

n12 rt2 =  H 1 +  qnl hl1 =  h2 - H2 =  -PA

angle of inflow with respect to the positive x-axis

Ainternal radius of deformation

p, PljyP2 densities of -ea water

Ti0 Y x and y directed tangential stresses at the top (i) andbottom (i + 1) of layer i
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APPENDIX B

New Reduced Gravity Experiments for the Regime Diagram (Fig. 10)

Experiment Vci L A L P Re RB Regime

155 54.4 80 4.0 227.1 2.0 10.9 .527 W

157 54.1 80 4.0 150.9 2.0 10.8 1.19 M

158 73.4 80 2.0 203.5 2.0 29.4 .89 E

159 73.2 80 2.5 203.5 2.0 23.4 .88 T

160 40.3 80 7.3 203.5 .49 4.4 1.99 N

161 41.4 80 1.6 203.5 .537 20.7 1.86 M

162 41.2 80 1.6 203.5 .69 20.6 1.44 W

163 40.5 80 4.6 203.5 1.21 7.0 .81 M

164 40.8 80 4.6 203.5 .69 7.1 1.43 N

units: vci in cm/s; L, Lp in km; A in 107 cm
2/s; a in 10-13 cm''sec

-1

See Appendix A for symbol definitions. Note that L and L are the half-port

width and half-port separation, respectively. The other parameters are the

same as in Table 1 except that (1) in Experiments 155 and 157 a land mass was
inserted in the location of the West Florida Shelf (See Fig. 9b, c) and the

center of the eastern port was taken to be 75 km south of the western end of

this land mass, (2) the southern port was centered at xp = 1000 km in Experimen;

153 and at xp = 1160 km in Exoeriment 157, and (3) the inflow transport was

14 Sv in Experiments 155 and 157, and 10 Sv in Experiments 160-164.

APPENDIX C

Derivation of Eddy-mean Energetics for a Two-layer, Free-surface, Primitive-

equation Model with Open Boundaries

Consider the momentum form of the primitive equations for a two-layer fluid
with a free surface:

a wi. f^
3- ---+ \vi • V vi + k f fW i = -Vpiat

(Ci)
+ ( i - i+l)/(Phi) + AV2 \vi

!T + V (hl vI + h2 w2) 0 (C2)

at + V " (h2 W2) 0 (C3)
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where i=1,2 and q, and n2 are the deviations of the free surface and the inter-

face, respectively (see Appendix A). Also,

P1 = gng = g(P 2 - Pl ) / P

-- - g'(n 1  - n2) 1 1

Note in (Cl) that we have used the traditional form of Laplacian friction.

Now define the kinetic and potential energies as

= ' 1 (u.2 + v.) where i=1,2
i u

(C4)

On 1 9p (g n2).

Multiplying (CI) by phi wi (i=1,2) and using (C2) and (C3) we obtain the kinetic

energy equations:

aK1
+ V • (v 1KI ) + pgV - (h1, vD 1)

(C5)

= pg 1 V • (h, wI ) + pAh% V2 %v1

and
aK2

U2+ V • (.v2K2) + pgV • (h2 \v2q1 )

+ pg'V • (h2 \v2nI2) = pgI1V ' (h2 v2) (C6)

+ Pg'n 2 V " (h2 \v2) + pAh2 v2 V2 W2

Note that in deriving (C6) we have assumed g'Vn1 << gVr 1 and ti=O for i=1,2,3.

The potential energy equation is formed by multiplying (C2) by pgn, and (C3)

by pg'n 2 and summing the results:

TP+ pgn1V * (hl w , + h2 Wv2 ) + pg'n 2v ' (h2 W2) 0 (C7)

Now define mean and perturbation quantities for u, v, h, and n such that

( -) 1 to +  T
( T) to ( )dt

a

4 50



and

where T is a suitable time interval. Also define the kinetic energy of the mean

flow per unit area as

K = 2h 2 + 2, i=1,2 (C8)

and the mean kinetic energy of the eddy flow per unit area as

Kv phi - 1i (C9)

ri
Similarly, for the potential energy of the mean flow

i = p(g- 2 + g r2 2  (C10)

and for the mean potential energy of the eddy flow

P' = 2P91 + g' ) (Cli)

The 1 equation is obtained by multiplying (T) with i=1 by phI W 1:

3 K - " ( I K 1 ) - Y I - p g V ( i h i5 1 i )

at1 (Cl 2)

+ Pgi 1 V (hl \j) + pAhl W1v2 \v1

!* where for layer i

Yi = i v ( ) +  iui(v" )

- V 1 v) + PhiVi(V "( jF ) -vV

The Ki equation is (C-5) - (C12) or

ST1  " qF - V ( ( 1K1)] +

.4 pgV • (nlhl v I - nii \v1 ) + pg [niV " (hI v1 ) (C13)

"- I V  hl 1 + pA~hl \vIV2 w1  " I 1 W v l
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Similarly, for R2 and Kwe obtain

M 2
- V *(w2k2) - Y2- PgV H01 2 W2)

+ Pgniv YTh V)- gv( 2 2 ~v)(C14)

+ pg'- V (h2 v) + 2

and

e p[ (nh )-v W2 2 )

+t pgIV -h "7 2 - V + 2)

-pg'v [ (n-,h2 Nv2) - V (-"lF2 w2)) C5
+pg nV (h T1) - Nh2 w)

2 WAh ~* '2) -h2  V~' (2 -)

Th Pg eqaIoniV bandb upyn (-T2-)T- by Vg{ and2F W-2) bypg
an su P9in th ruts:7 h

= -pri1V ~ 2  2) - pgri2V (W2 2V ~wk c

-Pgr V(h 2  '22 - 2g'%v2 2 w

Byd sutacing the fr omts ( ,w oti1teP eqain

-t -PgrliV* h WI+ w) - (W1 WV + h
51 +g1  *i 2h Pj V ' F!vw2 +) 2 (C16)

,- v -r2  * (2 W 2) - P'lV (W2 P

+ Pgniv * W T2
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When the terms in the energy equations are calculated from a model solution

in statistical equilibrium and a suitable time average is used, the tendency

terms are negligible. Regional energy budgets can be obtained, if (C12) - (C17)

are also integrated spatially. Integrated over a closed basin the divergence

terms vanish, but in an open domain they must be retained. The energy balances

are conveniently displayed using an energy box diagram such as Fig. 12a. Each

term is represented by an arrow in or out of the box for the energy reservoir

associated with that equation. When identical terms with opposite sign appear

in two equations, they represent a conversion of energy from one type to another.

The energy transfers shown in Fig. 12a were calculated from the spatially inte-

grated terms in C12) - (C17) as shown below.

terms

f F K -ffv • (\vi1)dx dy

{KI - Kj} JfY1dX dy

{PW - pgffv * (TTiF W 1)dx dy (C18)

PI P - Vg/f~lv . (hl W1 )dx dy

{K - D} -I pAffhI \v 1V2 Wi dx dy

Ki' terms

{KjF - Kj} - • ( \VT - \viK1 )dxdy

{ 1 EffYidx dy

{PW+ K} - P . (F, - hlwl)dxdy (Clg)

{Kj + P'- - p [niV " (hlWv) -- nlV * ( 1 1 )]dxdy

{K D -- pAI h\vV2V2\ 1 Vl- 1 v2 \W1
] dxdy
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K 2 terms

(72 , 2 - -~ffV *(w 2 2)dx dy

{K2 - Kj1 ffy 2 dx dy

{PW - 2} - f - .~rl + g'n~2)52 Wv21dx dy (C20)

{Y 2 - pfJfgl 1 + g, nj2 )v - (1F2 j9dx dy

(K2  D - Af w vV 2 i2 dx dy

K terms

{Kj F +K } jffV v T - 2)dxy

{K2 -K~l ,ffy2dx dy (C21)

{PW Y ~ E - pff [(gnl + g'n2)h~w (g-ni +g, F22dxy

{K~~ P'1 = - + g'ri2)V '(R2 W2) - (gi9 +*( 2 ~Vdd

{Kk Dl I PAJJfh 1 2V 2 2V 2 W2]1dx dy

P terms

{Rl -V) p rV (h W- i)dx dy
- ffg1  2 )d

(PWKI dy (C22)
4F K1  g *n +h gl j ) v ) + * OF)2d

P' terms

f (Ki + I'I E -PgfJ[TIIV *(h w 1) - *l (Fl v1 )Jdx dy

fP - Kj1 Pfff(9 rni + 92)'(hv)- (9 + g'nT 2 ) 22)dy

P,' g'l v (h + 27w) + g V v~dx dy
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The bracket notation is dropped in Section 8. In our results II( K I >>

IKjF - Ki + PW - K I. Thus, any controversy over the formulation of these terms

(Harrison and Robinson, 1978) should not cloud the interpretation of the basic

results in Fig. 12. Also, the difference between the frictional formulation in

the models and the energetics did not result in any serious imbalances in the

energy equations.
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